南京浦口区光谱仪校准-第三方仪器计量机构
-
¥180.00
定义:
ISO1OO12—1《计量检测设备的质量要求》标准将“校准”定义为:“在规定条件下,为确定计量仪器或测量系统的示值或实物量具或标准物质所代表的值与相对应的被测量的已知值之间关系的一组操作。一般需要拥有网络分析仪、频谱分析仪等国内水平的标准设备,测量范围覆盖从直流到微波频段、从模拟到数字领域,可开展集总参数、功率、相位等模拟信号特性以及数字传输特征参数的校准。常见校准仪器:
高频探头、扫频仪、频谱分析仪、综合测试仪等。
电磁
一般需要配备了标准电感、高频标准电感等标准设备,直流电压的不确定度达百万分之八,标准电容的不确定度达百万分之十,可开展电压、电流等参数的校准。常见校准仪器:
电压表、噪声电压表、LCR表、功率表、支流参数测试仪等。
时间频率
一般需要配备了GPS接收机等时间频率计量标准,时间频率准确度达到10 ,可直接溯源至美国NIST.频率范围从直流到46GHz,可对时间频率类仪器进行校准。常见校准仪器:
频率标准仪、通用计数器、时间间隔测量仪等。
长度
一般需要配备了激光干涉仪、精密测长仪等,测量范围从0到10米,分辨率高可达0.01μm,可开展光学仪器、精密量仪及设备等项目的校准。常见校准仪器:
量块、高度规、组合角度尺、正弦规、光学象限仪等。
力学
一般需要配备了压力校准装置、精密天平等精密仪器及标准件,砝码测量到E1级,可开展质量、衡器等项目的校准。常见校准仪器:
标准砝码、台秤、材料试验机、巴氏硬度计、测振仪等。
热工
一般需要配备了精密温度采集系统等热工计量校准设备,可开展温度一次仪表、温度传感器等项目的校准。常见校准仪器:
数字温度计、工业铜热电阻温度计、红外测温仪等。
理化
一般需要配备了旋转粘度计、旋光仪等检测设备及标准物质。可开展色谱、浓度等项目的校准。常见校准仪器:
酸度计、可见分光光度计、发射光谱仪、粘度计、旋光仪等。
光学/声学
服务范围:光功率计、光衰减器、噪声计、声级计等。
计量校准与计量检定的区别
✪计量校准:
在规定条件下,为确定测量仪器所指示的量值,与对应的由标准所复现的量值之间关系的一组操作。需满足环境、仪器、人员三个基本要求。
✪计量检定:
计量检定是指为评定计量器具的计量性能,确定其是否合格所进行的全部工作。
相同点:
都属于量值溯源的一种有效合理的手段。
区别:
1. 检定是对计量特性进行全面评定;而校准是确定其量值。
2. 检定要对计量器具做出合格与否的结论;而校准不需要。
3. 检定应发检定证书或不合格通知书;而校准是发校准证书并体现示值误差。
4. 检定依据检定规程;而校准依据校准规范。
计量技术是
一切量值准确可靠的基础。
“没有精密测量、就没有精密的产品”近年来,“医疗计划”被提出,其核心是“”,基础则为准确的测量。计量则为各类测量提供了满足各种量值及精度的“尺子”和“砝码”。
药物研发生产过程中的工艺参数是否被准确执行、产品性能是否被准确测量,这些生物制药全产业链中“测不出、测不全、测不准”的困难和难题,需要以的计量测试技术来解决。标准物质(RM)reference material:是一种已经确定了具有一个或多个足够均匀的特性值的物质或材料,作为分析测量行业中的“量具",简单理解就是生物、化学分析测量领域的“砝码”。有单克隆抗体标准物质、微生物定性定量标准物质、重组蛋白类药物有效成分标准物质、核酸定量标准物质等等。核酸定量类标准物质如何在核酸检测中发挥作用?病毒假病毒核酸标准物质具有拟似病毒的物理结构和病毒的特异性核酸序列,并且通过基因改造技术了假病毒标物可靠的生物安全性、稳定性,使标物可以大限度地重现病毒核酸检测的过程,实现从病毒核酸提取到核酸定量的全过程的质量控制,为病毒核酸诊断的结果提供的“生物标尺”,从而有效降低“假阴性”的出现概率。所以,测量是贯穿全产业链的。无论是设计、制造还是使用,都需要地测量各种属性、参数和运行状态,以实现的分析和优化。可以说,计量技术将国家计量基准(标准)的准确量值传递到生产车间里面,贯穿到制造过程的每一道工序的工程测量中,发挥提升质效的作用,是打造医疗“金标准”。
计量经济学的主要用途或目的主要有两个方面:
1、理论检验。
2、预测应用。
研究对象:
计量经济学的两大研究对象:横截面数据(Cross-sectional Data)和时间序列数据(Time-series Data)。前者旨在归纳不同经济行为者是否具有相似的行为关联性,以模型参数估计结果显现相关性;后者在分析同一经济行为者不同时间的资料,以展现研究对象的动态行为。
新兴计量经济学研究开始切入同时具有横截面及时间序列的资料,换言之,每个横截面都同时具有时间序列的观测值,这种资料称为追踪资料 (Panel data,或称面板资料分析)。追踪资料研究多个不同经济体动态行为之差异,可以获得较单纯横截面或时间序列分析更丰富的实证结论。
涉及到的相关学科:
若是所建立的回归模型在经济意义上没有因果关系,那么这个就是伪回归,例如路边小树年增长率和国民经济年增长率之间存在很大的相关系数,但是建立的模型却是伪回归。如果你直接用数据回归,那肯定存在正相关,而其实这个是没有意义的回归。
为避免伪回归,消除异方差,在不改变时间序列的性质及相关性的前提下,为获得平稳数据,通常会对时间序列取自然对数。对数据进行平稳性检验是研究中不可或缺的步骤,因为时间序列分析法只适用于平稳的数据。那么什么情况下会对数据取对数呢?
,关于对数的问题,若是自己选取的变量数据,里面有部分小于0,或者负数,需要重新考量下,看是否数据或者其他问题,此时肯定是没法取对数;
第二,针对CD 等生产函数等类型的数据分析,由于建模需要,一般需要取对数,此类情况一般会在柯布道格拉斯函数基础上,引入新的变量,包括但不局限于资本和劳动等变量;
第三,平时在一些数据处理中,经常会把原始数据取对数后进一步处理。之所以这样做是基于对数函数在其定义域内是单调增函数,取对数后不会改变数据的相对关系
第四,取对数作用主要有:缩小数据的数值,方便计算。例如,每个数据项的值都很大,许多这样的值进行计算可能对超过常用数据类型的取值范围,这时取对数,就把数值缩小了,例如TF-IDF计算时,由于在大规模语料库中,很多词的频率是非常大的数字。取对数后,可以将乘法计算转换称加法计算。某些情况下,在数据的整个值域中的在不同区间的差异带来的影响不同。也就是说,对数值小的部分差异的敏感程度比数值大的部分的差异敏感程度更高。这取对数之后不会改变数据的性质和相关关系,但压缩了变量的尺度,数据更加平稳,也消弱了模型的共线性、异方差性等。例如在会计或者金融等变量的实证研究中,引入变量资产规模等变量,一般会取对数,因为不同行业或者国有、民营等公司的资产规模差距很大,取对数,会缩小差距,使得实证研究更具有针对性。
另外,山大大学陈强老师在计量经济学及stata应用公众号中汇总出如下五种情况:
,如果理论模型中的变量为对数形式,则应取对数。比如,在劳动经济学中研究教育率的决定因素,通常以工资对数为被解释变量,因为这是从Mincer模型推导出来的。
,如果变量有指数增长趋势(exponential growth),比如 GDP,则一般取对数,使得 lnGDP 变为线性增长趋势(linear growth)。
第三,如果取对数可改进回归模型的拟合优度(比如 R2 或显著性),可考虑取对数。
第四,如果希望将回归系数解释为弹性或半弹性(即百分比变化),可将变量取对数。
第五,如果无法确定是否该取对数,可对两种情形都进行估计,作为稳健性检验(robustnesscheck)。若二者的回归结果类似,则说明结果是稳健的。
在经济学中,常取自然对数再做回归,这时回归方程为 lnY=a lnX+b ,两边同对X求导,1/Y*(DY/DX)=a*1/X,b=(DY/DX)*(X/Y)=(DY*X)/(DX*Y)=(DY/Y)/(DX/X) 这正好是弹性的定义
告诉你如何取对数quick\ generate series\ 输入新变量,比如 r=log( ),r就是取完对数后的序列。
很多同学在做实证文章的时候常常问,我的R平方只有0.08到0.09,也就是说我的模型只能解释数据的8%到9%。在实证文章里,特别对于横截面数据来说,有时R平方只有0.05。R平方是什么意思?就是说,我们的模型能解释数据的variance的多少,可能对于绝大部分的variance的解释,经济学家是不知道的
另外,R平方表示模型拟合优度,也就是模型解释力度,此值介于0-1之间,数值越大,说明模型解释力度越大,该值越大越好,在实际研究中,辞职表的意义相对较小,即使该值小于0.4或者更小,也关系不是很大。
R平方与所选取变量多少以及回归有很大关系,经常在会计领域多变量进行回归,此值会很小,所以不必太在乎这个统计量。另外调整R2可以为负数,当调整R2可以为负数时,说明此时R2会很小,几乎为0,此时模型几乎没有意义。就Panel Data的处理而言,建议行平稳性校验。一般完整的实证经济学论文,针对面板数据,会前期进行数据处理,包括描述性分析和平稳性检验的,这个根据期刊的要求或版面要求而定,另外,根据相关要求,一般情况下,由于面板数据主要核心在于回归,包括固定或者随机效应的回归结果,所以有些文章,并没有进行平稳性检验,而为了将面板数据做的高大上,分析更具有针对性,可以进行分类分行业分阶段进行回归,更能说明问题。
而在公司财务领域,研究都是资产负债率等,它们不可能包含单位根,所以我们基本上都不做这个检验。然而,在宏观经济领域,单位根过程很普遍,如果前期学者也证实了单位根过程的存在,一般也都做。所以具体情况,根据相关要求来定。
计量经济学是结合经济理论与数理统计,并以实际经济数据作定量分析的一门学科。计量经济学以古典回归分析方法为出发点。依据数据形态分为:横截面数据回归分析、时间序列分析、面板数据分析等。依据模型假设的强弱分为:参量计量经济学、非参量计量经济学、半参量计量经济学等。常运用的软件:EViews、Gretl、MATLAB 、Stata、R、SAS、SPSS等……