分离器搅拌摩擦焊,搅拌摩擦焊,来料加工在线咨询
-
面议
搅拌摩擦焊的特点 搅拌摩擦焊由于它是一种固相连接,所以与其他焊接方法相比具有很多的性。 1.搅拌摩擦焊的优点 (1)搅拌摩擦焊是一种、节能的连接方法 对于厚度为12.5mm的6XXX系列的铝合金材料的搅拌摩擦焊,可单道焊双面成型,总功率输入约为3kw;焊接过程不需要填充焊丝和惰性气体保护;焊前不需要开坡口和对材料表面作特殊的处理。 (2)焊接过程中母材不熔化 有利于实现全位置焊接以及高速连接。 (3)适用于热敏感性很强及不同制造状态材料的焊接 熔焊不能连接的热敏感性强的硬铝、超硬铝等材料可以用搅拌摩擦焊得到可靠连接;可以提高热处理铝合金的接头强度;焊接时不产生气孔、裂纹等缺陷;可以防止铝基复合材料的合金和强化相的析出或溶解;可以实现铸造/锻压以及铸造/轧制等不同状态材料的焊接。 (4)接头无变形或变形很小 由于焊接变形很小,可以实现精密铝合金零部件的焊接。 (5)焊缝组织晶粒细化接头力学性能优良 焊接时焊缝金属产生塑性流动,接头不会产生柱状晶等组织,而且可以使晶粒细化,焊接接头的力学性能优良,特别是抗损伤性能。 (6)易于实现机械化、自动化 可以实现焊接过程的精密控制,以及焊接规范参数的数字化输入、控制和纪录。 (7)搅拌摩擦焊是一种安全的焊接方法 与熔焊方法相比, 搅拌摩擦焊过程没有飞溅、烟尘、以及弧光的红外线或紫外线等有害辐射对人体的危害等。 摩擦焊的6个阶段 1.初始摩擦阶段 由于摩擦焊接表面总是凹凸不平,加之存在有氧化膜、锈、油、灰尘以及吸附的气体等,所以,显示出的摩擦因数很小,随着接触后摩擦压力的逐渐增加,摩擦加热功率也逐渐增加。 在不稳定摩擦阶段,凹凸不平互相压入的表面迅速产生塑性变形和机械挖掘现象,表面不平会引起振动,空气也可能进入摩擦表面。 2.不稳定摩擦阶段 摩擦破坏了待焊面的原始状态,未受污染的材质相接触,真实的接触面积增大,材质的塑性、韧性有较大提高、摩擦因数增大、摩擦加热功率提高、达到峰值后,又由于界面区温度的进一步升高、塑性增大和强度下降,加热功率又迅速降低。在这个阶段,摩擦变形量开始增大,并以飞边的形式出现。 在不稳定摩擦阶段,机械挖掘现象减小,振动减小,表面逐渐平整,出现高温塑性状态金属颗粒的“粘结”现象,而粘结在一起的金属又受扭力矩而剪断,并相互过渡。接触良好的塑性金属封闭了摩擦表面,使之与空气隔绝。 3.稳定摩擦阶段 在这个阶段,材料的粘结现象减少,分子作用现象增强,摩擦因数很小,摩擦加热功率稳定在较低的水平。变形层在力的作用下,不断从摩擦表面挤出,摩擦变形量不断增大,飞边也增大,与此同时,又被附近高温区的材料所补充而处于动态平衡之中。 4.停车阶段 这个阶段,伴随工件间相对运动的减慢和停止,摩擦扭矩增大,界面附近的高温材料被大量挤出,变形量亦随之增大,具有顶锻的特点,为了得到牢固的结合,停车时间要严格控制。 5.纯顶锻阶段 是指从工件停止相对运动到顶锻力上升到顶峰值所对应的阶段。顶锻力、顶锻速度和顶锻变形量对焊接质量具有关键性的影响。 6.顶锻维持阶段 是指顶锻力达到较大值到压力开始撤除所对应的阶段。 从停车阶段开始到顶锻维持阶段结束,变形层和高温区的部分金属被不断的挤出,焊缝金属产生变形、扩散以及再结晶,终形成了结合牢固的接头。 摩擦焊原理 在压力作用下,被焊界面通过相对运动进行摩擦时,机械能转变为热能,所产生的摩擦加热功率与摩擦因数,摩擦压力,摩擦相对运动速度几个因数成正比关系; 对于给定的材料,在足够的摩擦压力和足够的运动速度条件下,被焊材质温度不断上升,伴随着摩擦过程的进行,工件亦产生一定的变形量,在适当的时刻,停止工作间的相对运动,同时施加较大的顶锻力并维持一定的时间(称为维持时间),即可实现材质间的固相连接。连接驱动摩擦焊过程可分为6个阶段: 1.初始摩擦阶段 2.不稳定摩擦阶段 3.稳定摩擦阶段 4.停车阶段 5.纯顶锻阶段 6.顶锻维持阶段