福建莆田电力仪器检定校验校准机构
-
面议
电流表用于测量电路中的电流,下面电流表厂家向大家介绍电流表的使用说明。
(1)、校零:检查电流表的指针是否对准零刻度线,如有偏差,进行较正;
(2)、串联:电流表串联在电路中,使电流从标有“0.6”或“3”接线柱流入电流表,从“-”接线柱流出电流表。
(3)、不允许把电流表直接连到电源的两端;
(4)、使被测电流不超出电流表量程:在已知电路中电流大小时,直接选择合适的量程;若不能判断,则采用大量程试触,然后进行选择。
以上是电流表厂家介绍电流表的使用说明,电流表厂家生产制造电流表、电压表、赫兹表等仪表,欢迎咨询。
三相电流表用于高低压系统三相交流电流参数测量,电流表基于新MCU微处理器技术和模块化结构,单相电流表具备高抗干扰性、高稳定性和等特点。三相电流表支持开关量输入、继电器输出、通讯。数显三相电流表有5种安装尺寸,液晶三相电流表有3种安装尺寸,更广泛的适用于各种控制系统(SCADA、DCS等)。
三相电流表技术参数
1、三相电流表相当于将三台单相电流表集成在一台仪表内,同时测量显示Ia、Ib和Ic的电流值。
2、数显三相电流表
①外形:120×120×75mm(高×宽×深);开孔尺寸:108×108mm(高×宽)
②外形:80×80×75mm(高×宽×深);开孔尺寸:76×76mm(高×宽)
③外形:96×96×75mm(高×宽×深);开孔尺寸:80×80mm(高×宽)
④外形:72×72×75mm(高×宽×深);开孔尺寸:67×67mm(高×宽)
⑤外形:48×48×75mm(高×宽×深);开孔尺寸:76×76mm(高×宽)
电流表的使用方法?
解答
①电流表要与用电器串联在电路中(否则短路,烧毁电流表.);
②电流要从+接线柱入,从-接线柱出(否则指针反转,容易把针打弯.);
③被测电流不要超过电流表的量程(可以采用试触的方法来看是否超过量程.);
④不允许不经过用电器而把电流表连到电源的两极上(电流表内阻很小,相当于一根导线.若将电流表连到电源的两极上,轻则指针打歪,重则烧坏电流表、电源、导线.).
注意是:先烧表(电流表),后毁源(电源)
使用步骤
1、校零,用平口改锥调整校零按钮.
2、选用量程(用经验估计或采用试触法)
电流表归结起来有三看和三问 先看清电流表的量程,一般在表盘上有标记.确认格的一个表示多少安培把电流表的正负接线柱接入电路后,观察指针位置,就可以读数了.此外还要选择合适量程的电流表.可以先试触一下,若指针摆动不明显,则换小量程的表.若指针摆动大角度,则换大量程的表.一般指针在表盘中间左右,读数比较合适.
一看:量程.电流表的测量范围.
二看:分度值.表盘的一小格代表多少.
三看:指针位置.指针的位置包含了多少个分度值.
读数
1.看清量程
2.看清分度值(一般而言,量程0~3A分度值为0.1A,0.6A为0.02A)
3.看清表针停留位置(一定从正面观察)
--使用前的准备:1.调零,用平口改锥调整校零按钮.
2.选用量程{用经验估计或采用试触法}
功率计是一种用于测量电路、电子设备、光学系统等的功率的仪器。它可以测量电路或设备输入、输出的功率,同时也可以测量功率的相关参数,如电压、电流、功率因数等。功率计主要分为模拟功率计和数字功率计两种类型,其中数字功率计具有测量精度高、自动化程度高等优点,在工业生产和科学研究中得到广泛应用。同时,根据功率计的测量范围和测量精度不同,可以分为微功率计、毫瓦功率计、瓦级功率计、千瓦级功率计等不同类型。
光功率测量用于测量光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是基本的,非常像电子学中的万用表。在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。
光谱分析仪工作原理
光谱分析仪,是一种用于测量发光体的辐射光谱,即发光体本身的指标参数的仪器。光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律A=-lgI/Io=-LgT=KCL式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。
光谱分析仪物理原理
任何元素的原子都是由原子核和绕核运动的电子组成的,原子核外电子按其能量的高低分层分布而形成不同的能级,因此,一个原子核可以具有多种能级状态。能量的能级状态称为基态能级(E0=0),其余能级称为激发态能级,而能的激发态则称为激发态。正常情况下,原子处于基态,核外电子在各自能量的轨道上运动。如果将一定外界能量如光能提供给该基态原子,当外界光能量E恰好等于该基态原子中基态和某一较高能级之间的能级差E时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。