当非极性污染物通过尘埃吸附了极性污染物,具有了极性污染物的特性也将导致电化学迁移或电气故障,如粘接剂残留、手指印油和油脂。同时油和油脂会导致可焊性下降。
微粒状污染物主要是导致焊点牢固性、焊接质量的下降,增加焊接时出现拉尖或桥接等风险,同时微小焊料球锡珠可能会导致导体间电气短路。
污染物对5G产品的危害简介如下:
从5G产品质量和可靠性角度分析,离子型污染物可降低元器件的可焊性,从而降低了焊接质量,也可引起击穿、漏电、涂层与基板附着力下降、原件或电路被腐蚀、引线断裂等不良现象。非离子污染物主要引起白色污点等外观质量、电接触不良、可焊性不良等,同时又可吸附灰尘造成离子型污染。
从5G信号传输角度分析,5G电子产品的进一步微型化,元器件之间的间距极小,当被污染的5G电子产品组件暴露于潮湿环境或有偏压条件下,污染物很容易会引起漏电流、电解腐蚀和电化学迁移等不良现象,由于趋肤效应,在高频频段时电流将沿着导体的表面传输,因此材料表面的污染物和产生的不良现象,直接影响到5g信号的稳定传输,导致信号失真,严重的是影响了信号传输的完整性和可靠性。
溶剂清洗技术
早期应用于电子清洗制程的清洗剂,主要为含氟里昂(CFC-1 13)、1,1,1—三氯乙烷、四氯化碳等物质的溶剂型清洗剂。该类清洗剂具有化学稳定性好、无闪点、不燃不爆、干燥快、溶解力强等优点而具有广泛的适用性。但是ODS类清洗剂对臭氧层具有的破坏力,且ODS具有很强的GWP(温室效应潜能值),严重危害人类的生态环境。因此,1987年制定的《蒙特利尔协议书》规定,发达国家从1996年起不再使用ODS类物质,而发展中国家则允许推迟10年执行此规定。中国也已从2010年起,全部停止氯氟烃(即CFC)和哈龙两大类主要ODS(消耗臭氧层物质)的生产和使用。因此,开发氟氯烃类清洗的替代技术,是当前发展电子工业亟待解决的问题。
半水基清洗技术
半水基清洗剂是人们在清洗工艺的实践中,为了保持溶剂清洗优点的同时,又能克服其缺点而研制出的新型清洗剂。通常它是向有机溶剂中加入少量水和表面活性剂形成的。在它的组成中,有机溶剂仍然是主体,所以它基本上保持了有机溶剂原有的性能。半水基清洗剂溶解力高,清洗洁净度高,含有的有机溶剂对有机物有较好的清洗能力,表面活性剂则提供润湿、乳化和冲洗功能。漂洗过程有除去离子成分和水溶性污染物的特长,并且降低了原来易燃溶剂的挥发性和可燃性,与大多数金属和塑料材料相容性好。
虽然半水基清洗剂有很多优点,但是使用时仍遇到了许多问题。半水基清洗剂的使用工艺较溶剂清洗剂复杂,需要增加漂洗和烘干工艺。清洗剂和漂洗液中所含的水分,也可能会引起金属材料的生锈腐蚀,且清洗后的废液不能回收利用,且处理困难、处理量大,使用成本高。同时清洗剂中仍含有大量的有机溶剂,仍需考虑有毒溶剂的防护及防燃防爆问题。这些不足,严重限制了半水基技术的应用,使半水基清洗剂未能得到广泛的推广应用
免清洗技术
由于20世纪90年代早期的免洗焊剂\锡膏的出现,“免洗”一词成为当时热门的话题。按照现行的标准,免清洗的意思是说电路板的残留物从化学的角度看是安全的,不会对电路板产生任何的影响。通过检测腐蚀、SIR、电迁移等测试手段,可确定免洗组件的安全可靠性。改用免清洗工艺节省了清洗设备、清洗剂等费用,但是使用固含量低的免清洗助焊剂或锡膏,仍会或多或少的留有残留物。“免洗”违背了电子产品向更细间距、更高可靠性、更高密度封装以及低成本的发展趋势。对于自动程度较高、生产规模较大、焊后产品可靠性能指标要求不太高的企业可采用免清洗工艺,而对于可靠性要求高的产品来说,任何污染物或残留物都会对电子产品的安全性可靠性产生影响,所以,免清洗并不意味着不需要清洗,清洗制程反而在电子工艺制程中起着越来越重要的作用