TD4160-B0S-HHV南昌收购收购DDIC驱动IC
-
¥5.00
液晶驱动IC是电子产品中不可或缺的核心部件,其收购需要综合考虑多种因素,以***产品质量和市场竞争力;液晶驱动IC的收购需要综合考虑多个方面,以确保产品的质量和性能,并确保供应商能够提供及时的技术支持和售后服务。
显示面板驱动芯片类型通常由面板设计规格决定,而面板设计规格源于下游市场及客户的需求。一款显示面板是选择使用整合型驱动芯片方案还是分离型驱动芯片方案,通常在面板设计初期就会决定,一旦面板设计定型后,相应的面板驱动芯片架构也随之确定。
以上三种架构在玻璃基板走线以及芯片绑定连接的Pin脚设计均完全不同,每一种面板设计架构对应一种芯片,即或是分离型芯片,或是整合型芯片。分离型芯片(包括TED芯片)适配的面板,无法用单芯片替代,反之亦然。
受应用场景、客户需求的影响,单芯片产品与分离型芯片产品的技术路线存在较大差异。单芯片架构需整合数字电路、模拟电路、算法软件等,相比分离型芯片要投入较多资源、人力满足高整合、低功耗、抗干扰等多个设计规格;而在模拟电路设计方案、通信接口协议、系统架构等方面,整合型芯片与分离型芯片的设计方案均存在明显差异。所以DDIC企业一般需搭建立研发团队开展整合型、分离型的研发工作,资源、人力成本投入高。行业内惟有个别企业,能在小尺寸(移动终端)、大尺寸两个领域同时拥有先发优势。
驱动IC其实就是一套集成电路芯片装置,用来对透明电极上电位信号的相位、峰值、频率等进行调整与控制,建立起驱动电场,终实现液晶的信息显示。
在液晶面板中,有源矩阵液晶显示屏是在两块玻璃基板之间封入扭曲向列(TN)型液晶材料构成的。其中,接近显示屏的上玻璃基板沉积有红、绿、蓝(RGB)三色彩色滤光片(或称彩色滤色膜)、黑色矩阵和公共透明电极。下玻璃基板(距离显示屏较远的基板),则安装有薄膜晶体管(TFT)器件、透明像素电极、存储电容、栅线、信号线等。两玻璃基板内侧制备取向膜(或称取向层),使液晶分子定向排列。两玻璃基板之间灌注液晶材料,散布衬垫(Spacer),以间隙的均匀性。四周借助于封框胶黏结,起到密封作用;借助于点银胶工艺使上下两玻璃基板公共电极连接。
显示驱动芯片(Display Driver Integrated Circuit,简称DDIC)的主要功能是控制OLED显示面板。它需要配合OLED显示屏实现轻薄、弹性和可折叠,并提供广色域和高保真的显示信号。同时,OLED要求实现比LCD更低的功耗,以实现更高续航。
DDIC通过电信号驱动显示面板,传递视频数据。DDIC的位置根据PMOLED或AMOLED有所区分(PM和AM的区分见下文详述):
如果是PMOLED,DDIC同时向面板的水平端口和垂直端口输入电流,像素点会在电流激励下点亮,且可通过控制电流大小来控制亮度。
至于AMOLED,每一个像素对应着TFT层(Thin Film Transistor)和数据存储电容,其可以控制每一个像素的灰度,这种方式实现了低功耗和延命。DDIC通过TFT来控制每一个像素。每一个像素由多个子像素组成,来代表RGB三原色(R红色,G绿色,B蓝色)。
TFT上面的一个一个的像素的电压的值(或者是On状态的时间占空比),以扫描的方式按照一定的时间节奏一个一个的传输。
DDIC通过扫描的方式驱动显示屏。从上图可以看到,给相应的行和列加上电压就可以点亮相应的像素了。但是问题来了,如果我们想同时点亮2B和5E,给2列、5列以及B行、E行同时加电压的话,会发现连5B和2E也被无辜点亮。为了防止这种情况的发生,我们在时间上给予各条线先后顺序的区分。
目前选择的是每次处理一条X轴的线,每次只给一条横线加电压,然后再扫描所有Y轴上的值,然后再迅速处理下一条线,只要我们切换的速度够快,因为视觉残留现象,是可以展现出一幅完整的画面的。这种方式叫做Passive Matrix。
然后这样的方式的大的缺点就是,除非我们每条线切换的速度超级无地块,否则,实际上每条线可以分到的有电压的时间是非常短的,一旦电压移到下一条线上,原来这条线上的像素就全都暗下去了,整体画面给人的感觉是非常暗淡,不明亮的。
还有一个问题就是,如果某个像素不该点亮,但是因为它旁边的像素该被点亮,所以相应的X轴被加上了电压,这个像素也会受到旁边像素的一丢丢影响,被点亮一丢丢,结果就是图像的清晰度很不好,图像的边缘会模糊。
DDIC的封装形式
自从三星在2013年推出曲面屏(Curved Display),柔性显示屏技术迅速发展。大体上,显示屏分两类,即硬质显示屏和柔性显示屏。硬质显示屏使用硬质玻璃作为基板,而柔性屏使用一种塑料(polyimide,聚酰亚胺,简称PI,有机高分子材料)作为基板,具有可弯曲、可折叠、可卷曲的性能。一些智能手机在屏幕边缘弯折,提升了质感,就是归功于这种材料。
客观来说,COG、COF、COP是当下屏幕显示驱动芯片的3种不同封装技术,在广大媒体传导下也被称为“屏幕封装”。三者主要的应用是实现手机或电视系统对其屏幕(LCD,OLED)的驱动控制,以及与其它系统例如主板FPCB、部件等的信号链接。
COG(Chip On Glass)是将手机屏幕显示驱动芯片(Display Driver IC,DDIC)直接粘合链接到在玻璃材质为主的刚性玻璃基板上(Glass Substrate),之后由FPCB链接至手机其余PCB或部件。通常用于刚性显示屏,例如LCD。