镇江人脸识别情绪分析系统安装,面部识别:解读表情
-
面议
人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
人脸识别需要积累采集到的大量人脸图像相关的数据,用来验证算法,不断提高识别准确性,这些数据诸如A Neural Network Face Recognition Assignment(神经网络人脸识别数据)、orl人脸数据库、麻省理工学院生物和计算学习中心人脸识别数据库、埃塞克斯大学计算机与电子工程学院人脸识别数据等。
人脸识别主要用于身份识别。由于视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑是佳的选择,采用快速人脸检测技术可以从监控视频图象中实时查找人脸,并与人脸数据库进行实时比对,从而实现快速身份识别。
如计算机登录、电子政务和电子商务。在电子商务中交易全部在网上完成,电子政务中的很多审批流程也都搬到了网上。而当前,交易或者审批的授权都是靠密码来实现,如果密码被盗,就无法安全。但是使用生物特征,就可以做到当事人在网上的数字身份和真实身份统一,从而大大增加电子商务和电子政务系统的可靠性。
如电子护照及身份证。这或许是未来规模应用。在国际民航组织已确定,从2010年4月1日起,其118个成员国家和地区,使用机读护照,人脸识别技术是首推识别模式,该规定已经成为国际标准。美国已经要求和它有出入免签证协议的国家在2006年10月26日之前使用结合了人脸指纹等生物特征的电子护照系统,到2006年底已经有50多个国家实现了这样的系统。美国运输安全署(Transportation Security Administration)计划在全美推广一项基于生物特征的国内通用旅行证件。欧洲很多国家也在计划或者正在实施类似的计划,用包含生物特征的证件对旅客进行识别和管理。中国的电子护照计划公安部一所正在加紧规划和实施。
基于生理信号的情绪识别方法,主要包括基于自主神经系统( autonomic nervous system) 的情绪 识别和 基 于 中 枢 神 经 系 统( central nervous system) 的情绪识别。基于自主神经系统的识别方法是指通过测量心率、皮 肤 阻 抗、呼吸等生理信号来识别对应的情绪状态。美国麻省理工学院的 Picard 等人通过对人体自主神经系统的测量和分析,识别出了平静、生气、厌恶、忧伤、愉悦、浪漫、开心和畏惧等 8 种不同的情绪[20]。这些自主神经系统的生理信号虽然无法伪装,能 够 得 到 真 实 的 数 据,但 是 由 于 准 确率低且缺乏合理的评价标准,因此不太适合于实际应用。基于神经系统的识别方法,是指通过分析不同情绪状态下大脑发出的不同信号来识别相应的情绪。这种方法不易被伪装,并且与其他生理信号识别方法相比识别率较高,因此越来越多的被应用于情绪 识 别 研 究 [1]。