宿州回收氧化锌
-
面议
氧化锌由于具有化学和电气双重风险,目前被归类为第9类危险品。锂离子电池具有热失控的缺点,通常是由于内部短路而导致起火或爆炸。有许多因素可能导致锂离子电池热失控,其中包括过度充电、环境条件恶劣(例如端外部温度)和制造缺陷等。在热失控发生时,锂离子电池通常会在几秒钟内从室温提高到700℃以上。作为复杂的化学反应的一部分,锂离子电池中的电解质溶剂(通常为碳酸烷基酯)是电池燃烧的主要燃料。
当处理严重损坏或有缺陷的锂离子电池时,格外小心,因为这样会增加热失控的风险。通常采和容器(例如,Genius Technology公司用于中压至高压锂离子电池的LionGuard容器)与不易燃的包装材料配合使用,以安全地运输这些电池。随着锂离子电池总体数量的增加,在应用中损坏或具有缺陷的锂离子电池的数量也随之增加。如今,锂离子电池资源回收行业日趋成熟,但的相关法规差异很大。随着新行业和研究报告的发布,这些法规每年也可能发生重大变化。因此,在厂商开发和回收锂离子电池的过程中,需要密切跟踪相关法规(包括物流)方面的变化。
回收氧化锌、氧化锌概述:
1、氧化锌锂金属电池是以作为电,易引起爆炸,应用较少;
2、氧化锌锂离子电池是以锂掺杂金属的氧化物作为电,以锂离子的传递来完成充放电,该电池为充电电池。一般由正。负、隔膜、电解液组成。其他正材料组成不固定,负一般为碳素材料多为石墨,电解液是LiPF6的碳酸酯类有机溶液。常见锂离子电池中金属含量:钴15%、铜14%、铝4.1%、铁25%、锂0.1%。
回收氧化锌结构:
锂电池通常有两种外型:圆柱型和方型。电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负间间隔而成。正包括由钴酸锂(或镍钴锰酸锂、锰酸锂、磷酸亚铁锂等)及铝箔组成的电流收集。负由石墨化碳材料和铜箔组成的电流收集组成。电池内充有有机电解质溶液。另外还装有阀和PTC元件(部分圆柱式使用),以便电池在不正常状态及输出短路时保护电池不受损坏。
单节锂电池的电压为3.7V(磷酸亚铁锂正的为3.2V),电池容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。
氧化锌回收后如何处理与加工
对废弃锂电池进行预处理后,一般得到的破碎产物成分较为复杂,包括锂电池外壳、正材料、负材料,铜集流体、铝集流体、隔膜、电解液等,需要进一步分离处理。有价金属的回收利用工艺针对废弃锂离子电池的金属回收工艺主要有物理分选法、火法冶金法及湿法冶金法。对于废旧锂电池的用处,我们知道,废锂电池中的钴、锂、铜及塑料等均是宝贵资源,具有高的回收价值。
废旧锂电池主要由外壳、正、负、电解液与隔膜组成。正是通过起粘结作用的PVDF将钴酸锂粉末涂布于铝箔集流体两侧构成;负结构与正类似,由碳粉粘结于铜箔集流体两侧构成。对废旧锂电池的回收利用,常用的废锂电池资源化方法包括湿法冶金、火法冶金及机械物理法。相比于湿法及火法,锂电池粉碎机采用机械物理法无需使用化学试剂,且能耗更低,是一种环境友好且的方法。
1、物理分选法
物理分选法是以物料的粒度、密度、磁性等物料性能差别为基础的分选方法,主要有筛分、重力分选、浮选、磁选等。先采用立式剪碎机、风力摇床和振动筛对废弃锂离子电池进行分级处理,破碎及分选后得到正材料、负材料、隔膜、集流体等。再对正材料、负材料进行500℃热处理,然后通过浮选法俞离锂钴氧化物和石墨,该工艺的锂钴氧化物回收率可达97%。
2、火法冶金法
火法冶金法需要对废弃锂电池进行预处理,剥去电池外壳,然后将混合材料进行还原焙烧,黏结剂等有机物以气体形式逸出,低沸点的氧化锂大部分以蒸气形式逸出,用水吸收回收,其他金属(铜、镍、钴等)则形成金属合金,后续用湿法冶金技术进行深加工,电解质中的氟、磷等被固化在炉渣中。
由于氧化锌的使用寿命是有限,大量的废旧锂离子电池也随之产生。以中国为例,2020年我国废弃的锂电池将超过250亿只,总重超过50万吨。三元材料电池为例,其正含有大量贵金属,其中钴占5~20%,镍占5~12%,锰占7~10%,锂占2~5%和7%塑料,所含金属大多是稀有金属,应该被合理的回收再利用。例如,钴作为一种战略资源,被广泛运用于各个领域,除了锂电池还有高温合金等。可以推算,贵金属的回收量是的。
氧化锌处理设备特点:
1、通过锤振破碎、振动筛分与气流分选组合工艺可实现对废锂电池负材料中金属铜与碳粉的资源化利用;
2、负材料经过锤振破碎可有效实现碳粉与铜箔间的相互剥离,后经基于颗粒间尺寸差和形状差的振动过筛可使铜箔与碳粉得以初步分离;
3、对于粒径为0.125~0.250 mm且铜品位较低的破碎颗粒,可采用气流分选实现铜与碳粉间的有效分离,当气流速度为1.00 m/s时即可取得良好的回收效果;
4、该设备主要用于锂离子电池生产厂家,对报废正负片中的铝泊、铜泊与正负材料进行分离处理,以便循环利用之目的。成套设备在负压状态中运作,无粉尘外泄,分离效率可达90%以上。
如今,氧化锌电池已经广泛应用在从便携式电子产品到电动汽车等设备和场合中。而越来越多的能源厂商也将锂离子电池应用于储能系统,通常将其与可再生能源发电设施配套部署。
氧化锌回收行业的挑战
回收与采购
资源的回收和处理通常面临一系列特的挑战,需要适应经济和技术的发展。这些资源通常是广泛分布的,因此难以为其处理和回收工厂收集大量原料。相比之下,尽管铅酸电池回收等一些行业的收集和回收供应链已经构建并日益成熟,但锂离子电池回收供应链仍在不断变化和发展中。回收者在回收时可以将锂离子电池以便携式、小尺寸和大尺寸进行分类,分别对应于锂离子电池的电压(低压、中压、高压)。每种类型的锂离子电池都有不同的利益相关者群体——例如,制造商、经销商、电子产品回收商以及车辆回收商。在储能领域也存在一些利益相关者群体——电池提供商、储能集成商、储能项目开发商和储能资产所有者。通过广泛的利益相关者管理锂离子电池的固有异质性,这是锂离子资源回收行业厂商面临的一个主要挑战。
氧化锌(Li-polymer,又称之为高分子锂离子电池), 具有比能量高、小型化、超薄化、轻量化和性高等多种优势。基于这样的优点,锂聚合物电池是可制成任何形状与容量的电池,进而满足各种产品的需要;并且它采用铝塑包装,内部出现问题可立即通过外包装表现出来,即便存在隐患,也不会爆炸,只会鼓胀。在聚合物电池中,电解质起着隔膜和电解液的双重功能:一方面像隔膜一样隔离开正负材料,使电池内部不发生自放电及短路,另一方面又像电解液一样在正负之间传导锂离子。聚合物电解质不仅具有良好的导电性,而且还具备高分子材料所特有的质量轻、弹性好、易成膜等特性,也顺应了化学电源质量轻、环保的发展趋势。