FPC八层板加工,FPC柔性板
-
面议
FPC和PCB的诞生和发展催生了软硬组合板的新产品。因此,软硬组合板是将柔性电路板与硬电路板按相关工艺要求通过压制等工艺组合而成的具有FPC特性和PCB特性的电路板。我们今天看看应用领域
1.手机-在手机软硬件板的应用中,常见的有折叠式手机转折处、摄像头模块、键盘、射频模块等。
2.工业用途-工业用途包括用于工业、军事和医疗的软硬粘合板。大多数工业零件要求精度、安全性和无易损性。因此,软硬板所要求的特性是:高可靠性、、低阻抗损耗、完整的信号传输质量和耐久性。然而,由于工艺的高度复杂性,产量小,单价相当高。
3.汽车-在汽车软硬板的使用中,通常用于将方向盘上的按键连接到主板,车辆视频系统屏幕与控制面板之间的连接,侧门上音频或功能键的操作连接,倒车雷达图像系统传感器(包括空气质量、温度和湿度、特殊气体调节等)、车辆通信系统、卫星导航、后座控制面板和前端控制器连接板、车辆外部检测系统等。
4.消费类电子产品——在消费类产品中,DSC和DV是软板和硬板发展的代表,可分为两个主轴:性能和结构。在性能方面,软板和硬板可以三维连接不同的PCB硬板和组件。因此,在相同线密度下,可以增加PCB的总使用面积,相对提高其电路承载能力,降低触点的信号传输极限和装配误差率。另一方面,由于软硬板轻薄,可以弯曲布线,因此对减小体积和重量有很大帮助。
软硬结合板的涨缩问题:
涨缩产生的根源由材料的特性所决定,要解决软硬结合板涨缩的问题,先对挠性板的材料聚酰亚胺(Polyimide)做个介绍:
(1)聚酰亚胺具有优良的散热性能,可承受无铅焊接高温处理时的热冲击;
(2)对于需要更强调讯号完整性的小型装置,大部份设备制造商都趋向于使用挠性电路;
(3)聚酰亚胺具有较高的玻璃转移温度与高熔点的特性,一般情况下要在350 ℃以上进行加工;
(4)在有机溶解方面,聚酰亚胺不溶解于一般的有机溶剂。
挠性板材料的涨缩主要跟基体材料PI和胶有关系,也就是与PI的亚胺化有很大关系,亚胺化程度越高,涨缩的可控性就越强。
按照正常的生产规律,挠性板在开料后,在图形线路形成,以及软硬结合压合的过程中均会产生不同程度的涨缩,在图形线路蚀刻后,线路的密集程度与走向,会导致整个板面应力重新取向,终导致板面出现一般规律性的涨缩变化;在软硬结合压合的过程中,由于表面覆盖膜与基体材料PI的涨缩系数不一致,也会在一定范围内产生一定程度的涨缩。
从本质原因上说,任何材料的涨缩都是受温度的影响所导致的,在PCB冗长的制作过程中,材料经过诸多 热湿制程后,涨缩值都会有不同程度的细微变化,但就长期的实际生产经验来看,变化还是有规律的。
如何控制与改善?
从严格意义上说,每一卷材料的内应力都是不同的,每一批生产板的过程控制也不会是完全相同的,因此,材料涨缩系数的把握是建立在大量的实验基础之上的,过程管控与数据统计分析就显得尤为重要了。具体到实际操作中,挠性板的涨缩是分阶段的:
是从开料到烘烤板,此阶段涨缩主要是受温度影响所引起的:
要烘烤板所引起的涨缩稳定,要过程控制的一致性,在材料统一的前提下,每次烘烤板升温与降 温的操作一致化,不可因为一味的追求效率,而将烤完的板放在空气中进行散热。只有这样,才能大程度的消除材料的内部应力引起的涨缩。
第二个阶段发生在图形转移的过程中,此阶段的涨缩主要是受材料内部应力取向改变所引起的。
要线路转移过程的涨缩稳定,所有烘烤好的板就不能进行磨板操作,直接通过化学清洗线进行表面前处理,压膜后表面须平整,曝光前后板面静置时间须充分,在完成线路转移以后,由于应力取向的改变,挠性板都会呈现出不同程度的卷曲与收缩,因此线路菲林补偿的控制关系到软硬结合精度的控制,同时,挠性板的涨缩值范围的确定,是生产其配套刚性板的数据依据。
第三个阶段的涨缩发生在软硬板压合的过程中,此阶段的涨缩主要压合参数和材料特性所决定。
此阶段的涨缩影响因素包含压合的升温速率,压力参数设置以及芯板的残铜率和厚度几个方面。总的来说,残铜率越小,涨缩值越大;芯板越薄,涨缩值越大。但是,从大到小,是一个逐渐变化的过程,因此,菲林补偿就显得尤为重要。另外,由于挠性板和刚性板材料本质的不同,其补偿是需要额外考虑的一个因素。
高速PCB设计指南之三
第三篇 高速PCB设计
(一)、电子系统设计所面临的挑战
随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。目前约50% 的设计的时钟频率超过50MHz,将近20% 的设计主频超过120MHz。
当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到120MHz时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路设计技术已经成为电子系统设计师采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。
(二)、什么是高速电路
通常认为如果数字逻辑电路的频率达到或者超过45MHZ~50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。
实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。
信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的时间,如果传输时间小于1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会改变逻辑状态。
(三)、高速信号的确定
上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间?一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。下图为信号上升时间和允许的布线长度(延时)的对应关系。
PCB 板上每单位英寸的延时为 0.167ns.。但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。通常高速逻辑器件的信号上升时间大约为0.2ns。如果板上有GaAs芯片,则大布线长度为7.62mm。
设Tr为信号上升时间, Tpd 为信号线传播延时。如果Tr≥4Tpd,信号落在安全区域。如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。如果Tr≤2Tpd,信号落在问题区域。对于落在不确定区域及问题区域的信号,应该使用高速布线方法。
(四)、什么是传输线
PCB板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。串联电阻的典型值0.25-0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高。将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的终阻抗称为特征阻抗Zo。线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。如果传输线和接收端的阻抗不匹配,那么输出的电流信号和信号终的稳定状态将不同,这就引起信号在接收端产生反射,这个反射信号将传回信号发射端并再次反射回来。随着能量的减弱反射信号的幅度将减小,直到信号的电压和电流达到稳定。这种效应被称为振荡,信号的振荡在信号的上升沿和下降沿经常可以看到。
(五)、传输线效应
基于上述定义的传输线模型,归纳起来,传输线会对整个电路设计带来以下效应。
· 反射信号Reflected signals
· 延时和时序错误Delay & Timing errors
· 多次跨越逻辑电平门限错误False Switching
· 过冲与下冲Overshoot/Undershoot
· 串扰Induced Noise (or crosstalk)
· 电磁辐射EMI radiation
5.1 反射信号
如果一根走线没有被正确终结(终端匹配),那么来自于驱动端的信号脉冲在接收端被反射,从而引发不预期效应,使信号轮廓失真。当失真变形非常显著时可导致多种错误,引起设计失败。同时,失真变形的信号对噪声的敏感性增加了,也会引起设计失败。如果上述情况没有被足够考虑,EMI将显著增加,这就不单单影响自身设计结果,还会造成整个系统的失败。
反射信号产生的主要原因:过长的走线;未被匹配终结的传输线,过量电容或电感以及阻抗失配。
5.2 延时和时序错误
信号延时和时序错误表现为:信号在逻辑电平的高与低门限之间变化时保持一段时间信号不跳变。过多的信号延时可能导致时序错误和器件功能的混乱。
通常在有多个接收端时会出现问题。电路设计师确定坏情况下的时间延时以确保设计的正确性。信号延时产生的原因:驱动过载,走线过长。
5.3 多次跨越逻辑电平门限错误
信号在跳变的过程中可能多次跨越逻辑电平门限从而导致这一类型的错误。多次跨越逻辑电平门限错误是信号振荡的一种特殊的形式,即信号的振荡发生在逻辑电平门限附近,多次跨越逻辑电平门限会导致逻辑功能紊乱。反射信号产生的原因:过长的走线,未被终结的传输线,过量电容或电感以及阻抗失配。
5.4 过冲与下冲
过冲与下冲来源于走线过长或者信号变化太快两方面的原因。虽然大多数元件接收端有输入保护二极管保护,但有时这些过冲电平会远远超过元件电源电压范围,损坏元器件。
5.5 串扰
串扰表现为在一根信号线上有信号通过时,在PCB板上与之相邻的信号线上就会感应出相关的信号,我们称之为串扰。
信号线距离地线越近,线间距越大,产生的串扰信号越小。异步信号和时钟信号更容易产生串扰。因此解串扰的方法是移开发生串扰的信号或屏蔽被严重干扰的信号。
5.6 电磁辐射
EMI(Electro-Magnetic Interference)即电磁干扰,产生的问题包含过量的电磁辐射及对电磁辐射的敏感性两方面。EMI表现为当数字系统加电运行时,会对周围环境辐射电磁波,从而干扰周围环境中电子设备的正常工作。它产生的主要原因是电路工作频率太高以及布局布线不合理。目前已有进行 EMI仿真的软件工具,但EMI仿真器都很昂贵,仿真参数和边界条件设置又很困难,这将直接影响仿真结果的准确性和实用性。通常的做法是将控制EMI的各项设计规则应用在设计的每一环节,实现在设计各环节上的规则驱动和控制。
(六)、避免传输线效应的方法
针对上述传输线问题所引入的影响,我们从以下几方面谈谈控制这些影响的方法。
6.1 严格控制关键网线的走线长度
如果设计中有高速跳变的边沿,就考虑到在PCB板上存在传输线效应的问题。现在普遍使用的很高时钟频率的快速集成电路芯片更是存在这样的问题。解决这个问题有一些基本原则:如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7英寸。工作频率在50MHz布线长度应不大于1.5英寸。如果工作频率达到或超过75MHz布线长度应在1英寸。对于GaAs芯片大的布线长度应为0.3英寸。如果超过这个标准,就存在传输线的问题。
6.2 合理规划走线的拓扑结构
解决传输线效应的另一个方法是选择正确的布线路径和终端拓扑结构。走线的拓扑结构是指一根网线的布线顺序及布线结构。当使用高速逻辑器件时,除非走线分支长度保持很短,否则边沿快速变化的信号将被信号主干走线上的分支走线所扭曲。通常情形下,PCB走线采用两种基本拓扑结构,即菊花链(Daisy Chain)布线和星形(Star)分布。
对于菊花链布线,布线从驱动端开始,依次到达各接收端。如果使用串联电阻来改变信号特性,串联电阻的位置应该紧靠驱动端。在控制走线的高次谐波干扰方面,菊花链走线效果好。但这种走线方式布通率低,不容易布通。实际设计中,我们是使菊花链布线中分支长度尽可能短,安全的长度值应该是:Stub Delay <= Trt *0.1.
例如,高速TTL电路中的分支端长度应小于1.5英寸。这种拓扑结构占用的布线空间较小并可用单一电阻匹配终结。但是这种走线结构使得在不同的信号接收端信号的接收是不同步的。
星形拓扑结构可以有效的避免时钟信号的不同步问题,但在密度很高的PCB板上手工完成布线十分困难。采用自动布线器是完成星型布线的好的方法。每条分支上都需要终端电阻。终端电阻的阻值应和连线的特征阻抗相匹配。这可通过手工计算,也可通过CAD工具计算出特征阻抗值和终端匹配电阻值。
在上面的两个例子中使用了简单的终端电阻,实际中可选择使用更复杂的匹配终端。种选择是RC匹配终端。RC匹配终端可以减少功率消耗,但只能使用于信号工作比较稳定的情况。这种方式适合于对时钟线信号进行匹配处理。其缺点是RC匹配终端中的电容可能影响信号的形状和传播速度。
串联电阻匹配终端不会产生额外的功率消耗,但会减慢信号的传输。这种方式用于时间延迟影响不大的总线驱动电路。 串联电阻匹配终端的优势还在于可以减少板上器件的使用数量和连线密度。
后一种方式为分离匹配终端,这种方式匹配元件需要放置在接收端附近。其优点是不会拉低信号,并且可以很好的避免噪声。典型的用于TTL输入信号(ACT,HCT, FAST)。
此外,对于终端匹配电阻的封装型式和安装型式也考虑。通常SMD表面贴装电阻比通孔元件具有较低的电感,所以SMD封装元件成为。如果选择普通直插电阻也有两种安装方式可选:垂直方式和水平方式。
垂直安装方式中电阻的一条安装管脚很短,可以减少电阻和电路板间的热阻,使电阻的热量更加容易散发到空气中。但较长的垂直安装会增加电阻的电感。水平安装方式因安装较低有更低的电感。但过热的电阻会出现漂移,在坏的情况下电阻成为开路,造成PCB走线终结匹配失效,成为潜在的失败因素。
6.3 抑止电磁干扰的方法
很好地解决信号完整性问题将改善PCB板的电磁兼容性(EMC)。其中非常重要的是PCB板有很好的接地。对复杂的设计采用一个信号层配一个地线层是十分有效的方法。此外,使电路板的外层信号的密度小也是减少电磁辐射的好方法,这种方法可采用"表面积层"技术"Build-up"设计制做PCB来实现。表面积层通过在普通工艺 PCB 上增加薄绝缘层和用于贯穿这些层的微孔的组合来实现,电阻和电容可埋在表层下,单位面积上的走线密度会增加近一倍,因而可降低 PCB的体积。PCB面积的缩小对走线的拓扑结构有的影响,这意味着缩小的电流回路,缩小的分支走线长度,而电磁辐射近似正比于电流回路的面积;同时小体积特征意味着高密度引脚封装器件可以被使用,这又使得连线长度下降,从而电流回路减小,提高电磁兼容特性。
6.4 其它可采用技术
为减小集成电路芯片电源上的电压瞬时过冲,应该为集成电路芯片添加去耦电容。这可以有效去除电源上的毛刺的影响并减少在印制板上的电源环路的辐射。
当去耦电容直接连接在集成电路的电源管腿上而不是连接在电源层上时,其平滑毛刺的效果好。这就是为什么有一些器件插座上带有去耦电容,而有的器件要求去耦电容距器件的距离要足够的小。
任何高速和高功耗的器件应尽量放置在一起以减少电源电压瞬时过冲。
如果没有电源层,那么长的电源连线会在信号和回路间形成环路,成为辐射源和易感应电路。
走线构成一个不穿过同一网线或其它走线的环路的情况称为开环。如果环路穿过同一网线其它走线则构成闭环。两种情况都会形成天线效应(线天线和环形天线)。天线对外产生EMI辐射,同时自身也是敏感电路。闭环是一个考虑的问题,因为它产生的辐射与闭环面积近似成正比。
结束语
高速电路设计是一个非常复杂的设计过程。本文所阐述的方法就是针对解决这些高速电路设计问题的。此外,在进行高速电路设计时有多个因素需要加以考虑,这些因素有时互相对立。如高速器件布局时位置靠近,虽可以减少延时,但可能产生串扰和显著的热效应。因此在设计中,需权衡各因素,做出全面的折衷考虑;既满足设计要求,又降低设计复杂度。高速PCB设计手段的采用构成了设计过程的可控性,只有可控的,才是可靠的,也才能是成功的!
深圳市赛孚电路科技有限公司成立于2011年,公司由多名电路板行业的级人士创建,是国内的PCB/FPC快件服务商之一。公司成立以来,一直专注样品,中小批量领域。快速的交付以及过硬的产品品质赢得了国内外客户的信任。公司是广东电路板行业协会会员企业,是深圳高新技术认证企业。拥有完善的质量管理体系,先后通过了ISO9001、ISO14000、TS16949、UL、RoHS认证。公司目前拥有员工300余人,厂房面积9000平米,月出货品种6000种以上,年生产能力为150000平方米。为了满足客户多样化需求,2017年公司成立了PCBA事业部,自有SMT生产线,为客户提供PCB+SMT一站式服务。 公司一直致力于“打造中国的PCB制造企业”。注重人才培养,倡导全员“自我经营”理念,拥有一支朝气蓬勃、敬业、经验丰富的技术、生产及管理队伍;专注于PCB的工艺技术的研究与开发,努力提升公司在PCB领域内的技术水平和制造能力.
公司产品广泛应用于通信、工业控制、计算机应用、航空航天、、医疗、测试仪器、电源等各个领域。我们的产品包括:高多层PCB、HDI PCB、PCB高频板、软硬结合板、FPC等特种高难度电路板,专注于多品种,中小批量领域。我们的客户分布全球各地,目前外销订单占比70%以上。
赛孚电路秉承“以人为本,客户至上”的企业经营理念,“以质量为根,服务为本 ” 的企业服务宗旨,坚持持之以恒的精神,全员参与质量改进,不断吸纳国际新技术,完善产品品质,积极吸引和培养管理及技术人才,以确保向客户提供更好的服务,为客户创造更多价值,与客户共同成长。
什么是HDI线路板?
一.什么是HDI板?
HDI板(High Density Interconnector),即高密度互连板,是使用微盲埋孔技术的一种线路分布密度比较高的电路板。HDI板有内层线路和外层线路,再利用钻孔、孔内金属化等工艺,使各层线路内部实现连结。
二.HDI板与普通pcb的区别
HDI板一般采用积层法制造,积层的次数越多,板件的技术档次越高。普通的HDI板基本上是1次积层,高阶HDI采用2次或以上的积层技术,同时采用叠孔、电镀填孔、激光直接打孔等PCB技术。当PCB的密度增加超过八层板后,以HDI来制造,其成本将较传统复杂的压合制程来得低。
HDI板的电性能和讯号正确性比传统PCB更高。此外,HDI板对于射频干扰、电磁波干扰、静电释放、热传导等具有更佳的改善。高密度集成(HDI)技术可以使终端产品设计更加小型化,同时满足电子性能和效率的更高标准。
HDI板使用盲孔电镀 再进行二次压合,分一阶、二阶、三阶、四阶、五阶等。一阶的比较简单,流程和工艺都好控制。二阶的主要问题,一是对位问题,二是打孔和镀铜问题。二阶的设计有多种,一种是各阶错开位置,需要连接次邻层时通过导线在中间层连通,做法相当于2个一阶HDI。第二种是,两个一阶的孔重叠,通过叠加方式实现二阶,加工也类似两个一阶,但有很多工艺要点要特别控制,也就是上面所提的。第三种是直接从外层打孔至第3层(或N-2层),工艺与前面有很多不同,打孔的难度也更大。对于三阶的以二阶类推即是。
三.HDI板的优势
这种PCB在突显优势的基础上发展迅速:
1.HDI技术有助于降低PCB成本;
2.HDI技术增加了线密度;
3.HDI技术有利于使用的包装;
4.HDI技术具有更好的电气性能和信号有效性;
5.HDI技术具有更好的可靠性;
6.HDI技术在散热方面更好;
7.HDI技术能够改善RFI(射频干扰)/EMI(电磁干扰)/ESD(静电放电);
8.HDI技术提高了设计效率;
四.HDI板的材料
对HDI PCB材料提出了一些新的要求,包括更好的尺寸稳定性,抗静电移动性和非胶粘剂。HDI PCB的典型材料是RCC(树脂涂层铜)。RCC有三种类型,即聚酰亚胺金属化薄膜,纯聚酰亚胺薄膜,流延聚酰亚胺薄膜。
RCC的优点包括:厚度小,重量轻,柔韧性和易燃性,兼容性特性阻抗和的尺寸稳定性。在HDI多层PCB的过程中,取代传统的粘接片和铜箔作为绝缘介质和导电层的作用,可以通过传统的抑制技术用芯片抑制RCC。然后使用非机械钻孔方法如激光,以便形成微通孔互连。
RCC推动PCB产品从SMT(表面贴装技术)到CSP的发生和发展(芯片级封装),从机械钻孔到激光钻孔,促进PCB微通孔的发展和进步,所有这些都成为RCC的HDI PCB材料。
在实际的PCB中在制造过程中,对于RCC的选择,通常有FR-4标准Tg 140C,FR-4高Tg 170C和FR-4和Rogers组合层压,现在大多使用。随着HDI技术的发展,HDI PCB材料满足更多要求,因此HDI PCB材料的主要趋势应该是:
1.使用无粘合剂的柔性材料的开发和应用;
2.介电层厚度小,偏差小;
3 .LPIC的发展;
4.介电常数越来越小;
5.介电损耗越来越小;
6.焊接稳定性高;
7.严格兼容CTE(热膨胀系数);
五.HDI板制造的应用技术
HDI PCB制造的难点在于微观通过制造,通过金属化和细线。
1.微通孔制造
微通孔制造一直是HDI PCB制造的核心问题。主要有两种钻井方法:
a.对于普通的通孔钻孔,机械钻孔始终是其率和低成本的佳选择。随着机械加工能力的发展,其在微通孔中的应用也在不断发展。
b.有两种类型的激光钻孔:光热消融和光化学消融。前者是指在高能量吸收激光之后加热操作材料以使其熔化并且通过形成的通孔蒸发掉的过程。后者指的是紫外区高能光子和激光长度超过400nm的结果。
有三种类型的激光系统应用于柔性和刚性板,即准分子激光,紫外激光钻孔,CO 2 激光。激光技术不仅适用于钻孔,也适用于切割和成型。甚至一些制造商也通过激光制造HDI。虽然激光钻孔设备成本高,但它们具有更高的精度,稳定的工艺和成熟的技术。激光技术的优势使其成为盲/埋通孔制造中常用的方法。如今,在HDI微通孔中,99%是通过激光钻孔获得的。
2.通过金属化
通孔金属化的大困难是电镀难以达到均匀。对于微通孔的深孔电镀技术,除了使用具有高分散能力的电镀液外,还应及时升级电镀装置上的镀液,这可以通过强力机械搅拌或振动,超声波搅拌,水平喷涂。此外,在电镀前增加通孔壁的湿度。
除了工艺的改进外,HDI的通孔金属化方法也看到了主要技术的改进:化学镀添加剂技术,直接电镀技术等。
3.细线
细线的实现包括传统的图像传输和激光直接成像。传统的图像转移与普通化学蚀刻形成线条的过程相同。
对于激光直接成像,不需要摄影胶片,而图像是通过激光直接在光敏膜上形成的。紫外波灯用于操作,使液体防腐解决方案能够满足高分辨率和简单操作的要求。不需要摄影胶片,以避免因薄膜缺陷造成的不良影响,可以直接连接CAD/CAM,缩短制造周期,使其适用于和多种生产。
高精密度(HDI板)电路板的耐热性介绍
HDI板的耐热性能是HDI可靠性能中重要的一个项目,HDI板的板厚变得越来越薄,对其耐热性能的要求也越来越高。无铅化进程的推进,也提高了HDI板耐热性能的要求,而且由于HDI板在层结构等方面不同于普通多层通孔PCB板,因此HDI板的耐热性能与普通多层通孔PCB板相比有所不同,一阶HDI板典型结构。HDI板的耐热性能缺陷主要是爆板和分层。到目前为止,根据多种材料以及多款HDI板的耐热性能测试的经验,发现HDI板发生爆板机率大的区域是密集埋孔的上方以及大铜面的下方区域。
耐热性是指PCB抵抗在焊接过程中产生的热机械应力的能力, PCB在耐热性能测试中发生分层的机制一般包括以下几种:
1) 测试样品内部不同材料在温度变化时,膨胀和收缩性能不同而在样品内部产生内部热机械应力,从而导致裂缝和分层的产生。
2) 测试样品内部的微小缺陷(包括空洞,微裂纹等),是热机械应力集中所在,起到应力的放大器的作用。在样品内部应力的作用下,更加容易导致裂缝或分层的产生。
3) 测试样品中挥发性物质(包括有机挥发成分和水),在高温和剧烈温度变化时,急剧膨胀产生的内部蒸汽压力,当膨胀的蒸汽压力到达测试样品内部的微小缺陷(包括空洞,微裂纹等)时,微小缺陷对应的放大器作用就会导致分层。
HDI板容易在密集埋孔的上方发生分层,这是由于HDI板在埋孔分布区域特殊的结构所导致的。有无埋孔区域的应力分析如下表1。无埋孔区域(结构1)在耐热性能测试受热膨胀时,在同一平面上各个位置的Z方向的膨胀量都是均匀的,因此不会存在由于结构的差异造成的应力集中区域。当区域中设计有埋孔且埋孔钻在基材面上(结构2)时,在埋孔与埋孔之间的A-A截面上,由于基材没有收到埋孔在Z方向的约束,因而膨胀量较大,而在埋孔和焊盘所在的B-B截面上,由于基材受到埋孔在Z方向的约束,因而膨胀量较小,这三处膨胀量的差异,在埋孔焊盘与HDI介质和塞孔树脂交界处和附近区域造成应力集中,从而比较容易形成裂缝和分层。
HDI板容易在外层大铜面的下方发生分层,这是由于在贴装和焊接时,PCB受热,挥发性物质(包括有机挥发成分和水)急剧膨胀,外层大铜面阻挡了挥发性物质(包括有机挥发成分和水)的及时逸出,因此产生的内部蒸汽压力,当膨胀的蒸汽压力到达测试样品内部的微小缺陷(包括空洞,微裂纹等)时,微小缺陷对应的放大器作用就会导致分层。